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Relaxation dynamics in congested traffic
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We investigate the relaxation dynamics in congested traffic when starting from the “megajam” initial con-
dition (all cars standing in one big cluster of densityid the framework of the traffic model proposed by
Nagel and Schreckenberg. On the one hand, a simple comparison of the time evolutions of some relevant traffic
guantities shows that the slowest relaxing quantity is the density of “go and stop” cars rather than the average
velocity of cars. On the other hand, we find that the relaxation time diverges in the form of a power law
~ 1op~A. A simple theoretical argument predicts that the exponghii$ equal to 1. This prediction is consis-
tent with the numerical result.
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Ever since Nagel and Schreckenb@X$) elaborated their stept—t+1 the system update is performed in parallel for
traffic flow model[1], cellular automat4dCA) models have all cars according to the following four subrules.
been used frequently in order to understand the complex dy- R;: acceleration: v(k,t+%)<—min(v(k,t)+1,vmax). Ry:
namic behavior of traffi¢2,3]. Among the interesting inves- gjoying down (due to other cas vlk,t+2)«— min((k,t
tigations of the traffic system is the study of the tran3|t|on+;) gk,t). R, randomization (nois®: u(k,t+1)
from free flow to congested states. In the deterministic case 3’ " //* % ) . ) )
of the NS model[DNS), this transition, which is viewed as a <—m.a><(v(k,t+§)—1,0) with probability p. R,: motion: the
second-order phase transition, occurs at the critical densitg@" IS moved forward according to its new velocigyk, t
pe=1/(Uma+ 1) Although several studies have been done in™ 1) —X(K,t) +o(k,t+1). _
an effort to explain the nature of the transition for the non- [N order to characterize the behavior of the model, we
deterministic NS modeINDNS), this question has been un- perform global measurements on the system’_s Iatt|ce._ These
der debate until no4—7]. Using a local-density analysis, Mmeasurements are expressed as macroscopic guantities, de-
Lubecket al.[6] have investigated the characteristic fluctua-fining the global density, the space mean speg(t) as
tions in a steady state and presented the phase diagram of the
NDNS model. They suggested that the transition could be 1 N
described as a phase transition of second order. In contrast, p=N/L; (v)t)= NE v(kt). (1)
Gerwinski and Krug[8] argued that most features of the k=1
transition found in the DNS do not persist in the presence of
noise. In addition, the authors found that the transition pointet us introduce a new observabl®, called hereafter the
pe, Which separates the free flow to congested traffic, can bgensity of “go and stop” cars,
obtained from simple considerations of the dissolution of the

megajam, i.e., when all cars leave the megajam. Bglgw 1 N
the dissolution time of the megajam is very low, while far m(t) = =, n(t)[1-ngt+1)] (2
from p. it become “infinite,” i.e., the jam does not dissolve Nic1

within the measurement time. Although there exist several
studies of traffic jams in the literatuf@—10], some open with n,=0 for stopped cars ang =1 for moving cars.
guestions still remain. For example, what is the behavior of Our results presented in Fig. 1 show that the relaxation
the relaxation time near the vanishing value of noise whenime of the density of “go and stop” catm) is much higher
starting from a megajam initial condition? than that of the average velocitw)). Therefore, we stated
The NS model is a probabilistic CA of traffic flow on a that the slowest relaxing quantity s rather thar(v) [11].
one-lane roadway. It consists &f cars moving on a one-  Thys, the observable is more suitable for the study of the
dimensional lattice of. cells with periodic boundary condi- re|axation behavior in the traffic systems. The “rule” pub-
tions (the number of vehicledl is conservell Each cell is  jished in some traffic works that the equilibration of the sys-
either empty or occupied by just one vehicle with velocity tem is established by monitoring the time evolution of the
v=1,2,...,umax We denote b(k,t) andu(k,t) the position  ayerage velocity of cars is a procedure that is clearly not
and the velocity of thekth car at timet, respectively. The yajid in general.
number of empty cells in front of thkth car is denoted by |n this section, we shall investigate the dynamics of the
gk, )=x(k+1,t)=x(k,t)=1 and is referred to hereafter as NS model in congested traffic when starting from the mega-
the gap. Space and time are discrete. At each discrete tinjgm initial condition. This is done by plotting the time evo-
lutions of m and computing their relaxation times. Obvi-
ously, the time evolutions as well as the relaxation times
*Email address: najemmoussa@yahoo.fr should depend on both the densjtyand the randomization
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p. In Figs. 2 and 3, we plotted the time evolutionsraf  well asm become almost zero. In contrast, the lipit- 0 is
when starting from the megajam initial configuration, for more accessible for the investigations, thus we shall restrict
several values of density and randomization. We find that théhis study to this limit. For fixed high density, we plotted the
equilibration is delayed if the density of the megajam is in-time evolution ofm, when starting from the megajam initial
creasedFig. 2). Assuming the uniqueness of the stationaryconfiguration, under various values of randomizat{@ig.
state of the NDNS model, the survival of the megajam3). This shows that the time equilibration is delayed when
should be equivalent to the occurrence of jams with infinitethe randomizatiomp is decreased towards zero. Whe#- 0,
lifetimes for arbitrary initial conditior{8]. Indeed, for high the first car in the jam escapes easily since the restart prob-
density, the megajam never dissolves but can dissociate intbility is rather high. In addition, if the density is high, the
minijams after a certain long time. Next, we shall investigateescaping car reaches very quickly the back end of the jam
the influence of randomization on the relaxation dynamics obecause the velocity in the outflow region is maximal and the
the megajam. At this point, a remark about the two limitscovered distance is rather smédl=L—N).

p—0 andp—1 is appropriate. At high density, one can ex-  Assuming that the randomizatignis the rate of transition
pect that the relaxation time of the megajam divergespfor for the dynamics of the NS model, all quantitigsobabili-

—0 as well as forp— 1. The limit wherep—1 is rather ties of different eveniswill involve the following combina-
difficult to investigate numerically since the values(of as  tion only:
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FIG. 2. Time evolutions ofm, when starting
from the megajam initial configuration, for sev-
- eral values of density (p=0.005,vm,=5, and
L=1000.
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FIG. 3. Time evolutions ofn, when starting
from the megajam initial configuration, for sev-
eral values of randomizatiop (p=0.6, =5,
andL=1000.

FIG. 4. (a) Variations of the relaxation time
T Near the limitp— 0, for several fixed densi-
ties. (b) The log-log plot of the relaxation time
Tm Wmax=5 andL=1000.
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Eq. (3) that P(X) is invariant under the following transfor-
P(X) ~ ff f pdtypdt, - -+ pdt, mations:
X e Pug Pty .. g Ptr~th-1), (3) p— Ap andt—t/A, (4)

whereAp<1 andA is some real constant. Equatiof) im-
P(X) is the probability of some evenK formed by a plies that the relaxation timeis of the form
succession of transitions of different microscopic states
S(i=1,2,...,n). For example, one can imagine that the evo- 1
lution of the system is given as follows: within the time T p’ (5)
interval [0,t,] the system is in the sta® and then transits
to stateS, at timet;. The system remains in staB within Consequently, this simple theoretical argument predicts that
the time intervalty,t,] and then transits to staf at timet,,  the relaxation time diverges gs— 0 with dynamical expo-
and so on. In Eq(3), pdt represents the probability that the nent3=1.
system transits at timg, and the probability that the system  To study numerically the relaxation time corresponding to
remains in some stat@oes not transitwithin the time in-  an observablé, we shall use the nonlinear relaxation func-
terval[t;,t.,] is of the forme™i+17% |t is easy to see from tion [13],
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(1) =[At) — A(=) [/[[A0) — A()]. (6)  creased, the relaxation time is enhanced. From Hig, &ve
) ) o see that the relaxation time, follows a power-law behavior
The corresponding nonlinear relaxation time of the form
T= f H(t)dt. ) T ph. 9
0

Except for some minor fluctuations, the dynamic exporzent
remains unchanged when varying the density. For example,
(8 B~1.002:0.001 fop=0.8,3~1.004+0.01 forp=0.6, and
5~0.981+0.006 forp=0.5.
whereM, is the number of Monte Carlo steps that have to be L€t us come back to the other observabl(t). We see
excluded in the averaging of the observaBleEquation(8)  from Fig. 5a) that the corresponding relaxation timgdoes
must hold for all quantitie\, and hence one must focus on not vary whenp— 0. If we plot the time evolution ofv) for
the slowest relaxing quantity to get reliable results. In Fig.different values of the randomizatign[see Fig. 8o)], we
4(a), we plotted the variations of the relaxation timgof the ~ observe that the curves are confounded. Hence, no power-
observablen near the limitp— 0, for several fixed densities. law form is observed if one uses the observaple In con-
As a result, the relaxation time is found to divergepas 0  trast to7,, as the density of cars is increased, the relaxation
for higher densities. Moreover, as the density of cars is intime 7, is diminished. This shows clearly that the mean ve-

The condition that the system is well equilibrated is

tMO > T,
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locity is not the appropriate observable for studying the dy- Space
namics of the traffic flow models.

To study the finite-size effect on the relaxation dynamics,
we compute the relaxation timg, for different lattice sizes.
The results are given in Fig.(®, which shows that the
power-law behavior exists for any lattice size Moreover,
we find that the dynamical exponegis the same for all size
L. Yet, for a given randomizatiop, the finite-size scaling
form
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is found[Fig. 6(b)]. We findz=1.014+0.004, which is com-
patible with the result found for the deterministic model
where an exponert=1 was obtained14].

To follow the general trend of the cars from the tirhe
=0 when all cars are in the megajam, up to the tiggavhen
the system is saturated, we examine the distribution of the FIG. 8. Spatio-temporal patterns of evolution of cars fier0
cluster sizes at different time stefsee Figs. &) and 1b)]. andv,a=5, starting from a megajam initial configuration. The sys-
The cluster means here a string of successive stopped caf8M sizeL=40 and the number of cars I=24. After exactly six
i.e., we are considering only compact jams. At earlier timeime steps, the steady state is reached wHeje16/24 andm
the system contains only two sizes which correspond to gl/24.

long cluster and some a fem,) escaping cars moving with iyerges in the former case, the system in the second case
velocity close towma—p. No “go and stop” cars exist at this rejaxes immediately after a few time stefsee Fig. 8 The

time and the mean velocity is equal [(vmax—P). ASt  steady states in the DNS model depend on the initial con-
increases, the size of the long cluster decreases and the nufigsuration even if the average velocity is unique. However,
ber of escaping cars increases again. This leads to an ialifferent initial configurations may lead to different values of
crease of the mean velocity, as is shown from Fign).7 the density of “go and stop” caf45]. In contrast, the steady
(v)(t) is saturated atiy, a time when the number, becomes state of the NDNS model is unique, leading therefore to the
equal to (L=N)/(vmax—P). The mean velocityv) is then  uniqueness of botfv) andm.

equal to(L—N)/N. At times longer thar,, the long cluster In summary, the dynamics of the NDNS model in con-
disappears whereas clusters with small sizes appear in tfgested traffic could be well understood by studying the time

lattice, leading therefore to an increase of the density of “gdEvolutions of the density of "go and stop” cars. fisde-
and stop” cars. As Fig. (B) shows, the density of “go and creases, the relaxation timeof the system increases and

stop” cars is saturated at tintg,, when the distribution of diverges at the limip— 0. Therefore, the limip—0 should

cluster sizes decays exponentially with the cluster gl23. (r:lo:/riesrpotr)ld :3 ad(?ntlcr?l rpOIIntricZ)f éh(; mOddeI'nT:]? Clr't'():(al tr)1e-nt
Thus, it is claimed that within the interval tini@,ty], both avior observed IS characterized by a dynamical expone
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B =
(v) andm evolve with time. Fott>t,, mincreases with time B (rxp™, p=1).
but (v)(t) is saturated. The saturation f (of the systemis We thank Joachim Krug for useful discussions and re-
attained at timeg> to. marks. We greatly acknowledge Deepak Dhar, who contrib-

Finally, it is important to note that the case where:0is  uted immensely to the elaboration of the theoretical argu-
completely different fromp=0. While the relaxation time ment of the relaxation time developed in this article.
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