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We investigate the relaxation dynamics in congested traffic when starting from the “megajam” initial con-
dition sall cars standing in one big cluster of density 1d in the framework of the traffic model proposed by
Nagel and Schreckenberg. On the one hand, a simple comparison of the time evolutions of some relevant traffic
quantities shows that the slowest relaxing quantity is the density of “go and stop” cars rather than the average
velocity of cars. On the other hand, we find that the relaxation time diverges in the form of a power lawt
<t0p

−b. A simple theoretical argument predicts that the exponent “b” is equal to 1. This prediction is consis-
tent with the numerical result.
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Ever since Nagel and SchreckenbergsNSd elaborated their
traffic flow modelf1g, cellular automatasCAd models have
been used frequently in order to understand the complex dy-
namic behavior of trafficf2,3g. Among the interesting inves-
tigations of the traffic system is the study of the transition
from free flow to congested states. In the deterministic case
of the NS modelsDNSd, this transition, which is viewed as a
second-order phase transition, occurs at the critical density
rc=1/svmax+1d. Although several studies have been done in
an effort to explain the nature of the transition for the non-
deterministic NS modelsNDNSd, this question has been un-
der debate until nowf4–7g. Using a local-density analysis,
Lübecket al. f6g have investigated the characteristic fluctua-
tions in a steady state and presented the phase diagram of the
NDNS model. They suggested that the transition could be
described as a phase transition of second order. In contrast,
Gerwinski and Krugf8g argued that most features of the
transition found in the DNS do not persist in the presence of
noise. In addition, the authors found that the transition point
rc, which separates the free flow to congested traffic, can be
obtained from simple considerations of the dissolution of the
megajam, i.e., when all cars leave the megajam. Belowrc,
the dissolution time of the megajam is very low, while far
from rc it become “infinite,” i.e., the jam does not dissolve
within the measurement time. Although there exist several
studies of traffic jams in the literaturef7–10g, some open
questions still remain. For example, what is the behavior of
the relaxation time near the vanishing value of noise when
starting from a megajam initial condition?

The NS model is a probabilistic CA of traffic flow on a
one-lane roadway. It consists ofN cars moving on a one-
dimensional lattice ofL cells with periodic boundary condi-
tions sthe number of vehiclesN is conservedd. Each cell is
either empty or occupied by just one vehicle with velocity
v=1,2,… ,vmax. We denote byxsk,td andvsk,td the position
and the velocity of thekth car at timet, respectively. The
number of empty cells in front of thekth car is denoted by
gsk,td=xsk+1,td−xsk,td−1 and is referred to hereafter as
the gap. Space and time are discrete. At each discrete time

step t→ t+1 the system update is performed in parallel for
all cars according to the following four subrules.

R1: acceleration: vsk,t+ 1
3

d←min(vsk,td+1,vmax). R2:
slowing down sdue to other carsd: vsk,t+ 2

3
d←min(vsk,t

+ 1
3

d ,gsk,td). R3: randomization snoised: vsk,t+1d
←max(vsk,t+ 2

3
d−1,0) with probability p. R4: motion: the

car is moved forward according to its new velocity,xsk,t
+1d←xsk,td+vsk,t+1d.

In order to characterize the behavior of the model, we
perform global measurements on the system’s lattice. These
measurements are expressed as macroscopic quantities, de-
fining the global densityr, the space mean speedkvlstd as

r = N/L; kvlstd =
1

N
o
k=1

N

vsk,td. s1d

Let us introduce a new observable,m, called hereafter the
density of “go and stop” cars,

mstd =
1

N
o
k=1

N

nkstdf1 − nkst + 1dg s2d

with nk=0 for stopped cars andnk=1 for moving cars.
Our results presented in Fig. 1 show that the relaxation

time of the density of “go and stop” carssmd is much higher
than that of the average velocityskvld. Therefore, we stated
that the slowest relaxing quantity ism rather thankvl f11g.
Thus, the observablem is more suitable for the study of the
relaxation behavior in the traffic systems. The “rule” pub-
lished in some traffic works that the equilibration of the sys-
tem is established by monitoring the time evolution of the
average velocity of cars is a procedure that is clearly not
valid in general.

In this section, we shall investigate the dynamics of the
NS model in congested traffic when starting from the mega-
jam initial condition. This is done by plotting the time evo-
lutions of m and computing their relaxation times. Obvi-
ously, the time evolutions as well as the relaxation times
should depend on both the densityr and the randomization*Email address: najemmoussa@yahoo.fr
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p. In Figs. 2 and 3, we plotted the time evolutions ofm,
when starting from the megajam initial configuration, for
several values of density and randomization. We find that the
equilibration is delayed if the density of the megajam is in-
creasedsFig. 2d. Assuming the uniqueness of the stationary
state of the NDNS model, the survival of the megajam
should be equivalent to the occurrence of jams with infinite
lifetimes for arbitrary initial conditionf8g. Indeed, for high
density, the megajam never dissolves but can dissociate into
minijams after a certain long time. Next, we shall investigate
the influence of randomization on the relaxation dynamics of
the megajam. At this point, a remark about the two limits
p→0 andp→1 is appropriate. At high density, one can ex-
pect that the relaxation time of the megajam diverges forp
→0 as well as forp→1. The limit wherep→1 is rather
difficult to investigate numerically since the values ofkvl as

well asm become almost zero. In contrast, the limitp→0 is
more accessible for the investigations, thus we shall restrict
this study to this limit. For fixed high density, we plotted the
time evolution ofm, when starting from the megajam initial
configuration, under various values of randomizationsFig.
3d. This shows that the time equilibration is delayed when
the randomizationp is decreased towards zero. Whenp→0,
the first car in the jam escapes easily since the restart prob-
ability is rather high. In addition, if the density is high, the
escaping car reaches very quickly the back end of the jam
because the velocity in the outflow region is maximal and the
covered distance is rather smallsd=L−Nd.

Assuming that the randomizationp is the rate of transition
for the dynamics of the NS model, all quantitiessprobabili-
ties of different eventsd will involve the following combina-
tion only:

FIG. 1. Time evolution of the
average velocitykvl and the den-
sity of “go and stop” carsm when
starting from the megajam initial
configuration sr=0.6, p=0.005,
and vmax=5d. kvlsat and msat are
saturated valuessequilibrationd of
kvlstd and mstd, respectively. The
system size isL=1000.

FIG. 2. Time evolutions ofm, when starting
from the megajam initial configuration, for sev-
eral values of densityr sp=0.005,vmax=5, and
L=1000d.
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FIG. 4. sad Variations of the relaxation time
tm near the limitp→0, for several fixed densi-
ties. sbd The log-log plot of the relaxation time
tm svmax=5 andL=1000d.

FIG. 3. Time evolutions ofm, when starting
from the megajam initial configuration, for sev-
eral values of randomizationp sr=0.6, vmax=5,
andL=1000d.
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PsXd , E E ¯E pdt1pdt2 ¯ pdtn

3 e−pt1e−pst2−t1d
¯ e−pstn−tn−1d. s3d

PsXd is the probability of some eventX formed by a
succession of transitions of different microscopic states
Sisi =1,2,… ,nd. For example, one can imagine that the evo-
lution of the system is given as follows: within the time
interval f0,t1g the system is in the stateS1 and then transits
to stateS2 at time t1. The system remains in stateS2 within
the time intervalft1,t2g and then transits to stateS3 at timet2,
and so on. In Eq.s3d, pdti represents the probability that the
system transits at timeti, and the probability that the system
remains in some statesdoes not transitd within the time in-
terval fti ,ti+1g is of the forme−psti+1−tid. It is easy to see from

Eq. s3d that PsXd is invariant under the following transfor-
mations:

p → Lp and t → t/L, s4d

whereLp,1 andL is some real constant. Equations4d im-
plies that the relaxation timet is of the form

t ,
1

p
. s5d

Consequently, this simple theoretical argument predicts that
the relaxation time diverges asp→0 with dynamical expo-
nentb=1.

To study numerically the relaxation time corresponding to
an observableA, we shall use the nonlinear relaxation func-
tion f13g,

FIG. 5. sad Variations of the relaxation timetv
near the limitp→0, for several fixed densities.
sbd Time evolutions ofkvl for several fixed den-
sities, when starting from the megajam initial
configuration. p=0.0005 sstraight linesd and p
=0.005sscattersd svmax=5 andL=1000d.
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fstd = fAstd − As`dg/fAs0d − As`dg. s6d

The corresponding nonlinear relaxation time

t =E
0

`

fstddt. s7d

The condition that the system is well equilibrated is

tM0
@ t, s8d

whereM0 is the number of Monte Carlo steps that have to be
excluded in the averaging of the observableA. Equations8d
must hold for all quantitiesA, and hence one must focus on
the slowest relaxing quantity to get reliable results. In Fig.
4sad, we plotted the variations of the relaxation timetm of the
observablem near the limitp→0, for several fixed densities.
As a result, the relaxation time is found to diverge asp→0
for higher densities. Moreover, as the density of cars is in-

creased, the relaxation time is enhanced. From Fig. 4sbd, we
see that the relaxation timetm follows a power-law behavior
of the form

t ~ p−b. s9d

Except for some minor fluctuations, the dynamic exponentz
remains unchanged when varying the density. For example,
b<1.002±0.001 forr=0.8, b<1.004±0.01 forr=0.6, and
b<0.981±0.006 forr=0.5.

Let us come back to the other observablekvlstd. We see
from Fig. 5sad that the corresponding relaxation timetv does
not vary whenp→0. If we plot the time evolution ofkvl for
different values of the randomizationp fsee Fig. 5sbdg, we
observe that the curves are confounded. Hence, no power-
law form is observed if one uses the observablekvl. In con-
trast totm, as the density of cars is increased, the relaxation
time tv is diminished. This shows clearly that the mean ve-

FIG. 6. sad Variations of the relaxation time
tm near the limitp→0 for different lattice sizeL.
sbd Variations of the relaxation timetm with size
L for p=0.004sr=0.5 andvmax=5d.
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FIG. 7. Cluster size distributions at different time steps. The right side figures ofsad represent distributions of clusters with large sizes
sr=0.6, p=0.005,vmax=5, andL=1000d.
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locity is not the appropriate observable for studying the dy-
namics of the traffic flow models.

To study the finite-size effect on the relaxation dynamics,
we compute the relaxation timetm for different lattice sizes.
The results are given in Fig. 6sad, which shows that the
power-law behavior exists for any lattice sizeL. Moreover,
we find that the dynamical exponentb is the same for all size
L. Yet, for a given randomizationp, the finite-size scaling
form

tm ~ Lz s10d

is foundfFig. 6sbdg. We findz=1.014±0.004, which is com-
patible with the result found for the deterministic model
where an exponentz=1 was obtainedf14g.

To follow the general trend of the cars from the timet
=0 when all cars are in the megajam, up to the timetsat when
the system is saturated, we examine the distribution of the
cluster sizes at different time stepsfsee Figs. 7sad and 7sbdg.
The cluster means here a string of successive stopped cars,
i.e., we are considering only compact jams. At earlier time,
the system contains only two sizes which correspond to a
long cluster and some a fewsned escaping cars moving with
velocity close tovmax−p. No “go and stop” cars exist at this
time and the mean velocity is equal tonesvmax−pd. As t
increases, the size of the long cluster decreases and the num-
ber of escaping cars increases again. This leads to an in-
crease of the mean velocity, as is shown from Fig. 7sad.
kvlstd is saturated att0, a time when the numberne becomes
equal to sL−Nd / svmax−pd. The mean velocitykvl is then
equal tosL−Nd /N. At times longer thant0, the long cluster
disappears whereas clusters with small sizes appear in the
lattice, leading therefore to an increase of the density of “go
and stop” cars. As Fig. 7sbd shows, the density of “go and
stop” cars is saturated at timetsat when the distribution of
cluster sizes decays exponentially with the cluster sizef12g.
Thus, it is claimed that within the interval timef0,t0g, both
kvl andm evolve with time. Fort. t0, m increases with time
but kvlstd is saturated. The saturation ofm sof the systemd is
attained at timetsat@ t0.

Finally, it is important to note that the case wherep→0 is
completely different fromp=0. While the relaxation time

diverges in the former case, the system in the second case
relaxes immediately after a few time stepsssee Fig. 8d. The
steady states in the DNS model depend on the initial con-
figuration even if the average velocity is unique. However,
different initial configurations may lead to different values of
the density of “go and stop” carsf15g. In contrast, the steady
state of the NDNS model is unique, leading therefore to the
uniqueness of bothkvl andm.

In summary, the dynamics of the NDNS model in con-
gested traffic could be well understood by studying the time
evolutions of the density of “go and stop” cars. Asp de-
creases, the relaxation timet of the system increases and
diverges at the limitp→0. Therefore, the limitp→0 should
correspond to a critical point of the model. The critical be-
havior observed is characterized by a dynamical exponent
b st~p−b , b=1d.
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FIG. 8. Spatio-temporal patterns of evolution of cars forp=0
andvmax=5, starting from a megajam initial configuration. The sys-
tem sizeL=40 and the number of cars isN=24. After exactly six
time steps, the steady state is reached wherekvl=16/24 andm
=1/24.
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